Quantum mechanics I : tutorial solutions 2021.09 .30 , exercises week 1

1. Through what potential difference must an electron be accelerated in order to have
(a) the same wavelength as an X-ray of wavelength 0.15 nm ; and
(b) the same energy as the X-ray in part (a)?
a) the work done to move an electron through a potential V is $E=e V$
All this energy will transfer to the electron as kinetic energy $\quad E_{k}=\frac{1}{2} m_{e} v^{2}$
We want to equate these and see what is the final potential receded.
Using the be Broglie relation

$$
p=h / \lambda \quad \rightarrow \quad v=\frac{h}{m_{e} \lambda}
$$

Since we want $e V=\frac{1}{2} m_{e} v^{2}$

$$
\begin{aligned}
V=\frac{1}{2} \frac{h^{2}}{m_{e} \lambda^{2} e} & =\frac{\left(6.62 \cdot 10^{-34}\right)^{2}}{2 \cdot\left(9.11 \cdot 10^{-31}\right)\left(0.15 \cdot 10^{-9}\right)^{2}\left(1.6 \cdot 10^{-19}\right)} \\
& =66.8 \mathrm{~V}
\end{aligned}
$$

where $\quad h=6.62 \cdot 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$

$$
\begin{aligned}
& m_{e}=9.11 \cdot 10^{-31} \mathrm{~kg} \\
& e=1.6 \cdot 10^{-19} \mathrm{C}
\end{aligned}
$$

b) the energy of $x-2 a y$:

$$
\begin{gathered}
E=\frac{h c}{\lambda}=\frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{0.15 \cdot 10^{-9}}=1.32 \cdot 10^{-15} \mathrm{~J} \\
V=\frac{1.32 \cdot 10^{-15}}{1.6 \cdot 10^{-19}}=8.25 \cdot 10^{3} \mathrm{~V}
\end{gathered}
$$

2. A Neodymium laser operates at a wavelength of $1.06 \times 10^{-6} \mathrm{~m}$. If the laser is operated in pulsed mode, emitting pulses of duration $3 \times 10^{-11} \mathrm{~s}$, what is the minimum spread in
(a) frequency and
(b) wavelength of the laser beam?
a) Since the pulses have duration $\Delta t=3 \cdot 10^{-11} \mathrm{~s}$, we have this duration to remeasure the energy of the laser.
Given the Heisenberg uncertainty principle $\Delta E \Delta t \geqslant \hbar$, the uncertainty on the energy will be

$$
\Delta E \geqslant \frac{\hbar}{2} \frac{1}{\Delta t}
$$

that in our case is

$$
\Delta E \geqslant \frac{6.62 \cdot 10^{-34}}{2 \cdot 2 \pi \cdot 3 \cdot 10^{-11}}=1.75 \cdot 10^{-24} \mathrm{~J}
$$

Since $E=h \nu$

$$
\Delta v=\frac{\Delta E}{h}=\frac{1.75 \cdot 10^{-24}}{6.62 \cdot 10^{-34}}=2.64 \cdot 10^{9} \mathrm{H}_{2}
$$

b)

$$
\begin{aligned}
\Delta \lambda=c^{\frac{\Delta \nu}{\left(\frac{c}{\lambda}\right)^{2}-\Delta \nu}}{ }^{2} & =3 \cdot 10^{8} \cdot \frac{2.64 \cdot 10^{9}}{\left(\frac{3.10^{8}}{1.06 \cdot 10^{-6}}\right)^{2}-\left(2.64 \cdot 10^{9}\right)^{2}} \\
& =3.10^{8} \cdot \frac{2.64 \cdot 10^{9}}{8 \cdot 10^{28}} \\
& =9.9 \cdot 10^{-12} \mathrm{~m}
\end{aligned}
$$

3. When light of variable wavelength shines on a particular metal, no photoelectrons are emitted if the wavelength is greater than 550 nm . For what wavelength of light would the maximum kinetic energy of the photoelectrons be 3.5 eV ?
3) thushold : 550 nm

All energy is trausfered to electron - threshold

$$
E_{k}=3.5 \mathrm{eV} \cdot 1.6 \cdot 10^{-19} \mathrm{~J} / \mathrm{eV}=5.6 \cdot 10^{-19} \mathrm{~J}
$$

the energy of the light has to be $E_{k}+E_{\text {threshed }}$
the energy consespording to 550 nm is

$$
\begin{aligned}
& E_{\text {threshold }}=\frac{h c}{\lambda}=\frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{550 \cdot 10^{-9}}=3.6 \cdot 10^{-19} \mathrm{~J} \\
& \begin{aligned}
E_{\text {light }}=E_{k}+E_{\text {threshold }} & =(5.6+3.6) \cdot 10^{-19} \mathrm{~J} \\
& =9.2 \cdot 10^{-19} \mathrm{~J}
\end{aligned}
\end{aligned}
$$

The wavelength associated with it is:

$$
\lambda=\frac{h c}{E_{\text {light }}}=\frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{9.2 \cdot 10^{-19} \mathrm{~J}}=216 \mathrm{~nm}
$$

4. What is the typical de Broglie wavelength associated with an atom of helium in a gas at room temperature?
4) De Broglie relation $p=h / \lambda$
to find the λ associated with a certain momentum p, we reed to find its velocity at room temperature.

$$
T=293.15 \mathrm{k}
$$

The equipatition the orem for a mono-atomic ideal gas states that the aug. kinetic energy of every atom e is

$$
\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T \quad \text { (in 3-D) }
$$

where $k_{B}=1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{k}}$
so

$$
\begin{aligned}
v=\sqrt{\frac{3 k_{B} T}{m}} & =\sqrt{\frac{3 \cdot 1.38 \cdot 10^{-23} \cdot 293.15}{6.64 \cdot 10^{-27}}} \\
& =1.35 \cdot 10^{3} \frac{m}{s} \\
\lambda=\frac{h}{m v} & =\frac{6.62 \cdot 10^{-34}}{6.64 \cdot 10^{-27} \cdot 1.35 \cdot 10^{3}}=7.38 \cdot 10^{-11} \mathrm{~m}
\end{aligned}
$$

5. Show that the real wave functions $\Psi_{f}=\sin (k x-\omega t)$ and $\Psi_{f}=\cos (k x-\omega t)$ are not solutions of the free-particle Schrödinger equation, whereas the complex wave function $\Psi_{f}=\exp (i(k x-\omega t))$ is. This is an important difference between classical waves and quantum mechanical wave functions.
5) free partide Schrodinger eq. foe particle \rightarrow No Potential

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 \ln } \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x, t)+(x, t)
$$

$$
\begin{aligned}
& i \hbar \frac{?}{\eta t} \sin (k x-\omega t)=-i \omega \hbar \cos (k x-\omega t) \\
& -\frac{\hbar^{2}}{2 m} \frac{\eta^{2}}{\partial x^{2}} \sin (k x-\omega t)=\frac{\hbar^{2} k^{2}}{2 m} \sin (k x-\omega t)
\end{aligned}
$$

\ln case of $\psi_{f}(x, t)=e^{i(k x-\omega t)}$

$$
\begin{aligned}
i \hbar & \frac{\gamma}{\partial t} e^{i(k x-\omega t)} \\
-\frac{\hbar^{2}}{2 m} \frac{\eta^{2}}{\partial x^{2}} e^{i(k x-\omega t)} & =\frac{\hbar^{2} k^{2}}{2 m} e^{i(k x-\omega t)} \\
\hbar \omega & =\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned} e^{i(k x-\omega t)} \text { is solution }
$$

For mom-relativistic matin waves $k=\frac{p}{\hbar}$

$$
\rightarrow \quad E=\hbar w=\frac{p^{2}}{2 m}
$$

Just the dispersion elation ENERGY - MOMENTUM of a free particle
6. Consider the measurement of the position of a particle on the screen in a double-slit experiment. Describe what would happen
(a) on the basis of a classical particle picture;
(b) on the basis of a classical wave picture;
(c) on the basis of quantum mechanics.

See lectures for complete explaimation
a)

b)

2 Gaursions

Diffraction pastors
c) If it's observed where the q. particle parses through, it behaves like a classical partide

If it's observed the result on the screen only, it behaves like a wave.

TIPS

Be Broglie ration: $p=\frac{h}{\lambda}$

- uncertainty elation: $\Delta x \Delta p \geqslant \frac{\hbar}{2}, \Delta E \Delta t \geqslant \frac{\hbar}{2}$ etc for all conjugated variables

$$
\text { . } \quad E=\hbar \omega=h v=\frac{h c}{\lambda} \quad \text { and } \quad p=\hbar k
$$

- The equipatition the orem for a mono - atomic ideal gas states that the aug. kinetic energy of every atom is

$$
\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T \quad(\text { in 3-D })
$$

- Probability of finding a particle between the position x and $x+d x$
if $\psi(x, t)$ is the wave f^{n} of the particle

$$
P(x, x+d x)=\int_{x}^{x+d x} d x^{\prime} \underbrace{\left|\psi\left(x^{\prime}\right)\right|^{2}}
$$

