Quantum mechanics I : tutorial solutions 2021.10.14 self. study pack 2

We have seen that the wave function of a particle in an infinite square well is,

(1)
(2)
wave function $f(x)=\cos (k x) \quad(o r \sin (k x))$
while the energy levels are $E_{n}=\frac{\hbar^{2} n^{2} \pi^{2}}{8 m a^{2}}$

- Now, we look at the Bound stares in the Finite square well.

(1)
(2)
(3)

$$
u_{1}(x)=C e^{q x}
$$

$$
u_{3}(x)=D e^{-9 x}
$$

$$
u_{2}(x)=A \cos (k x)+B \sin (k x)
$$

watch out the
sign of the exp.
\rightarrow the w.f. has to decay

$$
u(x)= \begin{cases}u_{1}(x)=C e^{g x} & x \leq-a \\ u_{2}(x)=A \cos (k x)+B \sin (k x) & ,-a<x \leq a \\ u_{3}(x)=D e^{-g x} \quad, \quad x>a\end{cases}
$$

1) We study the symmetric solution $(\cos (k x))$.

We meed the derivative $\frac{d u(x)}{d x}$ to study the boundary conditions in $x=-a, \quad x=a$
in

$$
\begin{aligned}
& x=a: \\
& u_{3}(a)=D e^{-q a}=A \cos (k a)=u_{2}(a) \\
& u_{3}^{\prime}(a)=-q D e^{-q a}=-k A \sin (k a)=u_{2}^{\prime}(a)
\end{aligned}
$$

fixing $A=1$ we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
D=e^{q a} \cos (k a) \\
-q D e^{-q a}=-k \sin (k a)
\end{array}\right. \\
& \left\{\begin{array}{l}
D=e^{q a} \cos (k a) \\
-q e^{g a} \cos (k a) e^{-q^{a}}=-k \sin (k a) \\
\Rightarrow q=k \tan (k a)
\end{array}\right.
\end{aligned}
$$

2) For the ANTI-SYMMERRIC solution (sim $(k x)$) we have, in $x=a$:

$$
\begin{aligned}
& u_{3}(a)=D e^{-q a}=A \sin (k a)=u_{2}(a) \\
& u_{3}^{\prime}(a)=-q D e^{-q a}=k A \cos (k a)=u_{2}^{\prime}(a)
\end{aligned}
$$

fixing $\quad A=1 \quad$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
D=e^{q a} \sin (k a) \\
-q D e^{-q a}=k \cos (k a)
\end{array}\right. \\
& \left\{\begin{array}{l}
D=e^{q^{a}} \sin (k a) \\
-q e^{g a} \sin (k a) e^{-q^{a}}=k \cos (k a) \\
\Rightarrow-q=k \cot (k a)
\end{array}\right.
\end{aligned}
$$

3)

the boundary conditions impose the wave function to satisfy,
for a SYMMETRIC Solution: $\quad q=k \tan (k a)$
fr an AnTI-Symmerric Solution: $\quad q=-k \cot (k a)$

Using the existing relation between k \& q, we can look for legitimate solutions.

$$
\begin{aligned}
E=\frac{\hbar^{2} k^{2}}{2 m} & \rightarrow \\
& \& \quad k^{2}=\frac{2 m E}{\hbar^{2}} \\
& q^{2}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}
\end{aligned}
$$

defining for convenience $k_{0}^{2}=\frac{2 \mu V_{0}}{\hbar^{2}}$
we have

$$
q^{2}=k_{0}^{2}-k^{2}
$$

Now, we use $q=k \tan (k a)$ in this expression,

$$
\begin{aligned}
& k a \tan (k a)=\sqrt{\left(k_{0} a\right)^{2}-(k a)^{2}} \rightarrow \text { note that } \\
& \text { we multiplied } \\
& \text { every term } \\
& \text { by a }
\end{aligned}
$$

this expression gives the condition for having Bound stares!

See graph at: HTTPS://www.desmos.com/calculator/Ibfibyytka
NB: Syume \& anti-syum is referred to the initial solutions, not
art sym these functions.
$-k a \cot (k a)$

- Note that there are no AnTI-symm solutions when $k a=\sqrt{\frac{2 m E}{\hbar^{2}}} a<\frac{\pi}{2}$
- Always at least 1 symmetric solution

4) 5) 6) Numerical method (Bisection)

we look for $n=1$ solution
We see that the solution is between $0<k a<\frac{\pi}{2}$
the 2 intersecting functions are

$$
y=k a \tan (k a) \quad \text { and } \quad y=\sqrt{\left(k_{0} a\right)^{2}-(k a)^{2}}
$$

the value midway between 0 and $\frac{\pi}{2}$ is $\frac{\pi}{4}$. We substitute this value in the 2 functions.

$$
\begin{aligned}
& y=\frac{\pi}{4} \tan \left(\frac{\pi}{4}\right)=\frac{\pi}{4} \simeq 0.79 \\
& y=\sqrt{(5)^{2}-\left(\frac{\pi}{4}\right)^{2}} \simeq 4.94
\end{aligned}
$$

we clearly see from the graph that the solution has to be at a larger value of ka.

We repeat the same process,

- $\frac{\pi}{4}<k a<\frac{\pi}{2} \quad 1$ unidway $k a=\frac{3}{8} \pi$

$$
\begin{aligned}
& y=\frac{3}{8} \pi \tan \left(\frac{3}{8} \pi\right) \simeq 2.84 \\
& y=\sqrt{(5)^{2}-\left(\frac{3}{8} \pi\right)^{2}} \simeq 4.86
\end{aligned}
$$

- $\frac{3}{8} \pi<k a<\frac{\pi}{2} \quad 1$ unidway $k a=\frac{7}{16} \pi$

$$
\begin{aligned}
& y=\frac{7}{16} \pi \tan \left(\frac{7}{16} \pi\right) \simeq 6.90 \\
& y=\sqrt{(5)^{2}-\left(\frac{7}{16} \pi\right)^{2}} \simeq 4.81
\end{aligned}
$$

Here, $y \simeq 6.90 \quad\left(t_{\text {an }}\right)$ is too longe, hance we invert the limits.
$\frac{3}{8} \pi<k a<\frac{7}{16} \pi \quad$ midway $k a=\frac{13}{32} \pi$

$$
\begin{aligned}
& y=\frac{13}{32} \pi \tan \left(\frac{13}{32} \pi\right) \simeq 4.21 \\
& y=\sqrt{(5)^{2}-\left(\frac{13}{32} \pi\right)^{2}} \simeq 4.83
\end{aligned}
$$

$$
\begin{aligned}
& \frac{13}{32} \bar{k}<k a<\frac{7}{16} \pi, \text { undid way } \\
& y=\frac{27}{64} \pi \tan \left(\frac{27}{64} \pi\right) \simeq 5.29 \\
& y=\sqrt{(5)^{2}-\left(\frac{27}{64} \pi\right)^{2}} \simeq 4.82
\end{aligned}
$$

- $\quad \frac{13}{32} \bar{u}<k a<\frac{27}{64} \bar{\pi}$, unidway $k a=\frac{53}{128} \bar{\pi}$

$$
\begin{aligned}
& y=\frac{53}{128} \pi \tan \left(\frac{53}{128} \pi\right) \simeq 4.70 \\
& y=\sqrt{(5)^{2}-\left(\frac{53}{128} \pi\right)^{2}} \simeq 4.83
\end{aligned}
$$

Once you find the precision weeded, you take the last midway value of $k a \simeq \frac{53}{128} \pi$

NB : to find $\frac{E}{V_{0}}$, recall the definitions of k and k 。

$$
K=\sqrt{\frac{2 m E}{\hbar^{2}}}, \quad K_{0}=\sqrt{\frac{2 m V_{0}}{\hbar^{2}}}
$$

therefore, $\quad \frac{E}{V_{0}}=\frac{k^{2}}{k_{0}^{2}}=\frac{k^{2} a^{2}}{k_{0}^{2} a^{2}}$ we obtain the following table:

n	$k a$	E / V_{0}
$y=k a \tan$ (ka) 1	1.30	0.067
$y=-k a \cot$ (ka)2	2.59	0.27
3	3.85	0.59
4	4.90	0.96

C. F.

Rae A.I.M. "q .mechanics" section 2.5
(the green values come from Rae's book)
7) Sketch the w.f.

In the case of symmetric solution we have

$$
u(x)= \begin{cases}u_{1}(x)=C e^{g x}, & x \leq-a \\ u_{2}(x)=A \cos (k x), & -a<x \leq a \\ u_{3}(x)=D e^{-g x}, & x>a\end{cases}
$$

TIPS

A quick way to remember the INFINITE square well energy levels.

- free partide $E=\frac{p^{2}}{2 m}$
- De Broglie $\quad p=h / \lambda$

Since the wavefunction has to satisfy the bound any conditions, therefore being zero at the edges of the well, we have

$$
\begin{gathered}
2 a=n \frac{\lambda}{2} \rightarrow \lambda=\frac{4 a}{n} \\
E_{n}=\frac{h^{2}}{2 m} \frac{n^{2}}{16 a^{2}}, \quad, \quad h=2 \pi \hbar \\
E_{n}=\frac{\hbar^{2} n^{2} \pi^{2}}{8 m a^{2}}
\end{gathered}
$$

