Quantum mechanics I : tutorial solutions 2021.11.11 , self. study pack 4

1) Show that the wave function given about 3 minutes in to the movie is an eigenfunction of the operator for total momentum, and find its (vector) eigenvalue.

- We look at the momentum operator in 3 DIMENSIONS which has the four:

$$
\begin{aligned}
\hat{P} & =-i \hbar \underline{\nabla} \\
& =-i \hbar\left[\hat{x} \rho_{x}+\hat{y} \rho_{y}+\hat{z} \rho_{z}\right]
\end{aligned}
$$

what are the eigenfunctions of this operator?
We show that the wave function

$$
\psi(\underline{r})=\psi(x, y, z)=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z)
$$

where

$$
\begin{aligned}
& \psi_{x}(x)=A_{x} e^{i k_{x} x} \\
& \psi_{y}(y)=A_{y} e^{i k_{y} y} \\
& \psi_{z}(z)=A_{z} e^{i k_{z} z}
\end{aligned}
$$

In order to do that, we apply \hat{P} on $\psi(\underline{r})$

NB these derivatives act only on the respective variables

$$
\begin{aligned}
\hat{\mathrm{P}} \psi(\underline{r}) & =-i \hbar \underline{\nabla} \psi(\underline{r}) \\
& =-i \hbar\left[\hat{x} \eta_{x}+\hat{y} \eta_{y}+\hat{z} \eta_{z}\right] \psi_{x}(x) \psi_{y}(y) \psi_{z}(z) \\
& =-i \hbar\left[\hat{x}\left(i k_{x}\right)+\hat{y}\left(i k_{y}\right)+\hat{z}\left(i k_{z}\right)\right] \psi(\underline{r}) \\
\hat{p} \psi(\underline{r}) & =\hbar\left[k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}\right] \psi(\underline{r})
\end{aligned}
$$

this wave function $\psi(\underline{r})$, eigenfunction of \hat{p}, is a 3D PLANE wAve \Rightarrow let's see why "plane"

$$
\begin{aligned}
\psi(\underline{v}) & =\psi_{x}(x) \psi_{y}(y) \psi_{z}(z) \\
& =A_{x} A_{y} A_{z} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} \\
& =A e^{i \underline{k} \cdot \underline{r}}
\end{aligned}
$$

The vector \underline{k} is the constant momentoren of the wave. We know that a wave front is identified by a CONSTANT PHASE of the wave,

therefore $\underline{k} \cdot \underline{r}=$ coast.
As shown in the picture, all the vectors \underline{r} have the same projection along the WAVEFRONT $\perp \underline{k}$, therefore constant phase. Note that the wavefront is a plane, therefore PLANE WAVE, in this case in 3D.

- What about the 3D Schrodinger equation?

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+v(x, y, z)\right] u(x, y, z)=E u(x, y, z)
$$

where $\quad \nabla^{2}=\underline{\nabla} \cdot \underline{\nabla}=\sum_{i} O_{i}^{2}$
laplace operator

$$
\text { e.g. in 3D } \quad \nabla^{2} f=\frac{\eta^{2} f}{\eta x^{2}}+\frac{\partial^{2} f}{\eta y^{2}}+\frac{\eta^{2} f}{\eta z^{2}}
$$

If the potential can be separated,

$$
V(x, y, z)=V_{1}(x)+V_{2}(y)+V_{3}(z)
$$

then we can find a solution to the equation of the four

$$
u(x, y, z)=X(x) Y(y) Z(z)
$$

2) Substitute the wave function $u(x, y, z)=X(x) Y(y) Z(z)$ into the Schrödinger equation to separate it out into three ordinary differential equations.

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z)\right] u(x, y, z)=} \\
& = \\
& =\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{1}(x)+v_{2}(y)+v_{3}(z)\right] x(x) y(y) z(z) \\
& = \\
& \quad-\frac{\hbar_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}}{2 m}\left[\left(\eta_{x}^{2} x\right) y z+X\left(\eta_{y}^{2} y\right) z+x y\left(\eta_{z}^{2} z\right)\right]+ \\
& \\
& \quad+\left[V_{1}(x)+V_{2}(y)+v_{3}(z)\right] \times y z=E x y z
\end{aligned}
$$

divide everything by $u(x, y, z)=x y z$

$$
\begin{aligned}
\quad \in \quad & \left(-\frac{\hbar^{2}}{2 m} \frac{1}{x} \partial_{x}^{2} x+V_{1}(x)\right)+ \\
& +\left(-\frac{\hbar^{2}}{2 m} \frac{1}{y} \partial_{y}^{2} y+V_{2}(y)\right)+ \\
& +\left(-\frac{\hbar^{2}}{2 m} \frac{1}{z} \partial_{z}^{2} z+V_{3}(z)\right)
\end{aligned}
$$

therefore, the same of these brackets has to be Constant $(=E)$.

We want this equation to be twe for every x, y, z, therefore $E A C H$ bracket has to be a CONSTANT iTself.

$$
\begin{aligned}
E & =\frac{E_{1}}{\left(-\frac{\hbar^{2}}{2 m} \frac{1}{x} O_{x}^{2} x+V_{1}(x)\right)}+ \\
& +\left(-\frac{\hbar^{2}}{2 m} \frac{1}{y} \eta_{y}^{2} y+V_{2}(y)\right)+ \\
& +\left(-\frac{\hbar^{2}}{2 m} \frac{1}{z} \partial_{z}^{2} z+V_{3}(z)\right) \\
& =E_{1}+E_{2}+E_{3}
\end{aligned}
$$

$N B$
Am example of separable potential is the $3 D$ box.
3) Find the energies and degeneracies of the low-lying excited states for the particle in a 3D cubic box, as specified about 21 minutes into the movie.

- the eigenevergy of a particle in a $3 D$ box is

$$
E_{n_{1, n_{2, n}}}=\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}+\frac{n_{3}^{2}}{c^{2}}\right)
$$

Here, we consider the special case $a=b=c$
there fore

$$
E_{n_{1}, n_{2}, n_{3}}=\frac{\hbar^{2} \bar{n}^{2}}{8 m e} a^{2}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{3}\right)
$$

If we set are of the $n_{i}=2$ and fix
the others to 1 we hove:

$$
\left.\begin{array}{c}
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=6 \\
2 \\
1
\end{array} 1_{1}^{2} 1 \begin{array}{l}
1 \\
1
\end{array} 1 \begin{array}{l}
1 \\
1
\end{array}\right] \text { Dec }=3
$$

therefore an energy equal to $E_{112}=E_{121}=E_{211}=\frac{6 \hbar^{2} \pi^{2}}{8 \mathrm{~m} a^{2}}$
3) $E_{n_{1}, n_{2}, n_{3}}=\frac{9 \hbar^{2} \hbar^{2}}{8 m a^{2}}$ ineaus that we have two energy levels $n_{i}=2$ and one $n_{j}=1$

$$
\begin{array}{cc}
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=9 \\
1 & 2
\end{array} 2^{2} \begin{aligned}
& 1 \\
& 2
\end{aligned} 2^{2} 110
$$

$$
\begin{aligned}
& \text { for } E_{n_{1}, n_{2}, n_{3}}=\frac{11 \hbar^{2} \pi^{2}}{8 \mu a^{2}} \\
& n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=11 \\
& \left.\begin{array}{lll}
1 & 1 & 3 \\
1 & 3 & 1 \\
3 & 1 & 1
\end{array}\right] \quad D E C=3 \\
& \text { for } E_{n_{1}, n_{2}, n_{3}}=\frac{12 \hbar^{2} \pi^{2}}{8 m a^{2}} \\
& n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=12 \\
& 22 \text { 2 } 2 \text { 2 DEG } 2 \text { (NO DEGENERACY) } \\
& \text { for } E_{n_{1}, n_{2}, n_{3}}=\frac{14 \hbar^{2} \pi^{2}}{8 m a^{2}} \\
& n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=14 \\
& \left.\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2 \\
2 & 1 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
3 & 2 & 1
\end{array}\right] \quad D E G=6
\end{aligned}
$$

4) Repeat this for a box that has a square section, but one dimension is different from the others (e.g. $a=b . \neq c$). Look at both the cases $a>c$ and $a<c$ - the ordering of the states is different in the two cases.
if ore dimension is different the energies are

$$
\begin{aligned}
E_{n_{1}, n_{2}, n_{3}} & =\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{n_{1}^{2}+n_{2}^{2}}{a^{2}}+\frac{n_{3}^{2}}{c^{2}}\right) \\
& =\frac{\hbar^{2} \pi^{2}}{8 m} \frac{\left(n_{1}^{2}+n_{2}^{2}\right) c^{2}+n_{3}^{2} a^{2}}{a^{2} c^{2}}
\end{aligned}
$$

let's look at the first few states

$$
\begin{aligned}
E_{111} & =\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{2}{a^{2}}+\frac{1}{c^{2}}\right) \\
& =\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{2 c^{2}+a^{2}}{a^{2} c^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{112}=\frac{\hbar^{2} \hbar^{2}}{8 m} \frac{2 c^{2}+4 a^{2}}{a^{2} c^{2}} \\
& E_{121}=E_{211}=\frac{\hbar^{2} \pi^{2}}{8 m} \frac{5 c^{2}+a^{2}}{a^{2} c^{2}}
\end{aligned}
$$

etc...

- see section 3.2 of Rae
- under stand figure 3.1

Is the order of the states dependent on the choice of $a \& \&$?

$$
\begin{aligned}
& E_{n_{1}, n_{2}, n_{3}}=\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{n_{1}^{2}+n_{2}^{2}}{a^{2}}+\frac{n_{3}^{2}}{c^{2}}\right) \\
& E_{112}=\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{2}{a^{2}}+\frac{4}{c^{2}}\right) \\
& E_{121}=E_{211}=\frac{\hbar^{2} \pi^{2}}{8 m}\left(\frac{5}{a^{2}}+\frac{1}{c^{2}}\right) \\
& E_{112}>E_{121} \quad \text { if } \\
& \frac{2}{a^{2}}+\frac{4}{c^{2}}>\frac{5}{a^{2}}+\frac{1}{c^{2}} \\
& \frac{3}{c^{2}}>\frac{3}{a^{2}} \Rightarrow a>c
\end{aligned}
$$

Therefore, the order of the states changes wat the choice of $a \quad \& \quad c$.
for $a>c \quad E_{112}>E_{121}=E_{211}$
for $a<c \quad E_{112}<E_{121}=E_{211}$
5) Write down the wave functions for the 3D harmonic oscillator, and write down an expression for the energy.

Now, we consider a homomic potential in 3D, that is the 3D harmonic oscillator.

$$
V(x, y, z)=\frac{1}{2} m\left(w_{1}^{2} x^{2}+w_{2}^{2} y^{2}+w_{3}^{2} z^{2}\right)
$$

We want to find a solution (in the form of wave function) to the following Schrodinger equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+\frac{1}{2} m\left(w_{1}^{2} x^{2}+w_{2}^{2} y^{2}+w_{3}^{2} z^{2}\right) \Psi=E \Psi
$$

We know that, since the potential is SEPARABLE, we can try a separable solution of the form,

$$
\bar{\Psi}(x, y, z)=\varphi_{x}(x) \varphi_{y}(y) \varphi_{z}(z)
$$

Dividing the Schrödinger eq. by Ψ we obtain three separate 1D harmonic oscillators.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{1}{\Psi} \nabla^{2} \Psi+\frac{1}{2} m\left(\omega_{1}^{2} x^{2}+\omega_{2}^{2} y^{2}+\omega_{3}^{2} z^{2}\right)=E \\
& -\frac{\hbar^{2}}{2 m} \frac{1}{\Psi} \partial_{x}^{2} \varphi_{x}+\frac{1}{2} m \omega_{1}^{2} x^{2} \varphi_{x}+ \\
& -\frac{\hbar^{2}}{2 m} \frac{1}{\Psi} \partial_{y} \varphi_{y}+\frac{1}{2} m \omega_{1}^{2} y^{2} \varphi_{y}+ \\
& -\frac{\hbar^{2}}{2 m} \frac{1}{\Psi} \partial_{z} \varphi_{z}+\frac{1}{2} m \omega_{1}^{2} z^{2} \varphi_{z}=E_{1}+E{ }_{2}+E=3=E
\end{aligned}
$$

We know that the solution of the as h.o. are the Hermite polynomials.

For x, for example,

$$
\begin{aligned}
& \varphi_{x, 0}=\left(\frac{\alpha_{x}}{\pi}\right)^{1 / 4} \exp \left(-\frac{x^{\prime}}{2}\right) \\
& \varphi_{x, 1}=\left(\frac{4 \alpha_{x}}{\bar{h}}\right)^{1 / 4} x^{\prime} \exp \left(-\frac{x^{\prime 2}}{2}\right)
\end{aligned}
$$

where $\alpha_{x}=\frac{m \omega_{n}}{\hbar} \quad$ \& $x^{\prime}=\sqrt{\frac{\mu \omega}{\hbar}} x$ and similarly for the other variables.

In this way, the total ground state wave function is

$$
\begin{aligned}
\varphi_{0} & =\varphi_{x, 0} \varphi_{y, 0} \varphi_{z, 0} \\
& =\left(\frac{\alpha_{x} \alpha_{y} \alpha_{z}}{\pi^{3}}\right)^{1 / 4} \exp \left(-\frac{1}{2}\left(x^{\prime^{2}}+y^{\prime}+z^{\prime^{2}}\right)\right)
\end{aligned}
$$

while the energy is the sum of the single dimensional energies.

$$
\begin{aligned}
E & =E_{1}+E_{2}+E_{3}= \\
& =\hbar \omega_{1}\left(n_{1}+\frac{1}{2}\right)+\hbar \omega_{2}\left(n_{2}+\frac{1}{2}\right)+\hbar \omega_{3}\left(n_{3}+\frac{1}{2}\right)
\end{aligned}
$$

6) For the special case in which all the omegas are equal, work out the energies and degeneracies of the ground state and the first five excited states.

If

$$
\begin{aligned}
& w_{1}=w_{2}=w_{3} \quad \text { the energies are } \\
& E_{n_{1}, n_{2}, n_{3}}=\hbar_{w}\left(n_{1}+n_{2}+n_{3}+\frac{3}{2}\right)
\end{aligned}
$$

$$
E_{000}=\frac{3}{2} \hbar \omega
$$

$$
E_{100}=E_{010}=E_{001}=\frac{5}{2} \hbar \omega
$$

$$
E_{110}=E_{011}=E_{101}=E_{200}=E_{020}=E_{002}=\frac{7}{2} \hbar_{\omega}
$$

$$
E_{111}=E_{210}=E_{201}=E_{102}=E_{120}=E_{012}=E_{021}=\frac{9}{2} \hbar \omega
$$

$$
E_{112}=E_{121}=E_{211}=\frac{11}{2} \hbar \omega
$$

$$
E_{122}=E_{212}=E_{221}=\frac{13}{2} \hbar w
$$

tips

When we ore dealing with a reparable potential e.g. $V(x, y, z)=V_{x}(x) V_{y}(y) V_{z}(z)$, we have a separable solution $\psi(x, y, z)=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z)$ and the eigenenergies will be the sum of the single energies, $\quad E=E_{x}+E_{y}+E_{z}$

