Quantum mechanies I : titorial solutions 2021.11. 25 self-study pack 5

1) Review your lecture notes to make sure you know where the expressions given at the beginning of the movie come from. Note: there is one other expression you should know, for the second-order change in energy.
the expressions at the beginning ore:

- perturbation theory $1^{\text {st }}$ order non-decenerate

$$
E_{n}^{(1)}=\int_{\text {al space }} d V u_{n}^{(0)^{*}} \hat{H}^{\prime} u_{n}^{(0)} \equiv H_{n n}^{\prime}
$$

$1^{\text {st }}$ oder change in energy
for $m \neq n \quad a_{n m}=\frac{\int d V u_{m}^{(0)^{*}} \hat{H}^{\prime} u_{n}^{(0)}}{E_{n}^{(0)}-E_{m}^{(0)}}=\frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}$ $1^{\text {st }}$ oder charge in the wave function coefficients.

How do we find these?

Suppose we have a complicated potential in our system.

We can think of changing it to a simpler one and add a sural perturbation to it.

$$
\hat{H}=\hat{H}^{(0)}+\hat{H}
$$

unsolvable solvable perturbation
the solutions to the solvable model are

$$
\hat{H}^{(0)} u_{n}^{(0)}=E_{n}^{(0)} u_{n}^{(0)}
$$

the system uewritien with the perturbation is

$$
\hat{H}=\hat{H}^{(0)}+\hat{\beta} \hat{H}^{\prime}
$$

with this β, we can set one perturbation strength
We expect the energies \& wave functions of \hat{H} to be perturbed by \hat{H}^{\prime}

$$
\begin{aligned}
& E_{n}=E_{n}^{(0)}+\beta E_{n}^{(1)}+\beta^{2} E_{n}^{(2)}+\cdots \\
& u_{n}=u_{n}^{(0)}+\beta u_{n}^{(1)}+\beta^{2} u_{n}^{(2)}+\cdots
\end{aligned}
$$

Sine this is $1^{\text {st }}$ order perturbation theory, we meed only the stander corrections.

$$
\begin{gathered}
\hat{H} u_{n}=E_{n} u_{n} \\
\left(H^{(0)}+\beta H^{\prime}\right)\left(u^{(0)}+\beta u_{n}^{(n)}+\beta^{2} u_{n}^{(2)}+\ldots\right)= \\
=\left(E_{n}^{(0)}+\beta E_{n}^{(1)}+\beta^{2} E_{n}^{(2)}+\ldots\right)\left(u^{(0)}+\beta u_{n}^{(n)}+\beta^{2} u_{n}^{(2)}+\ldots\right) \\
\hat{H}^{(0)} u_{n}^{(0)}+\beta\left(H^{(0)} u_{n}^{(n)}+H^{\prime} u^{(0)}\right)+O\left(\beta^{2}\right) \\
=E_{n}^{(0)} u_{n}^{(0)}+\beta\left(E_{n}^{(0)} u_{n}^{(n)}+E_{n}^{(n)} u^{(0)}\right)+O\left(\beta^{2}\right)
\end{gathered}
$$

Since this has to hold for any value of β, terms on the LHS \& RHS w/ same power of β hove to be equal,

$$
\begin{aligned}
& \beta^{0} \longrightarrow \hat{H}^{(0)} u_{n}^{(0)}=E_{n}^{(0)} u_{n}^{(0)} \\
& \beta^{1} \longrightarrow \hat{H}^{(0)} u_{n}^{(1)}+\hat{H}^{\prime} u_{n}^{(0)}=E_{n}^{(0)} u_{n}^{(1)}+E_{n}^{(1)} u^{(0)}{ }_{n}
\end{aligned}
$$

\& so on for $2^{\text {nd }}$ order. $3^{2 d}$ order...

We stop to the $1^{\text {st }}$ oder.

$$
\left(\hat{H}^{\prime}-E_{n}^{(n)}\right) u_{n}^{(0)}=\left(E_{n}^{(0)}-\hat{H}^{(0)}\right) u_{n}^{(1)}
$$

we write $u^{(1)}$ as

$$
\left.u_{n}^{(1)}=\sum_{\substack{k \\
k \neq n}} a_{n k} u_{k}^{(0)}\right\} \begin{aligned}
& \text { the perturbed eeg. vet. } \\
& \text { expressed as a sum e } \\
& \text { of the unperturbed ones }
\end{aligned}
$$

Not exactly a

$$
u_{n}^{(1)}
$$

k $u_{k}^{(0)}$ manx product but you can see it as:
we have

$$
\left(\hat{H}^{\prime}-E_{n}^{(n)}\right) u_{n}^{(0)}=\left(E_{n}^{(0)}-\hat{H}^{(0)}\right) \sum_{k \neq n} a_{n k} u_{k}^{(0)}
$$

we can apply $H^{(0)}$ on the eigenstates,
(*) $\left(\hat{H}^{\prime}-E_{n}^{(1)}\right) u_{n}^{(0)}=\sum_{k \neq n}\left(E_{n}^{(0)}-E_{k}^{(0)}\right) a_{n k} u_{k}^{(0)}$
if we multiply for $u_{n}^{(0)^{*}}$ \& integrate,

$$
\begin{aligned}
&\left.\int d V u_{n}^{(0) k} \hat{H}^{\prime} u_{n}^{(0)}-E_{n}^{(1)} \int d V u_{n}^{(0)}\right)_{n}^{k} u_{n}^{(0)}=1 \\
&=\sum_{k \neq n}\left(E_{n}^{(0)}-E_{k}^{(0)}\right) a_{n k} \int d V u_{n}^{(0)} u^{(0)} u_{k}^{(0)}
\end{aligned}
$$

where we used the fact that the set of $u_{i}^{(0)}$ is ORTHONORTAL. We obtained,

$$
E_{n}^{(1)}=\int d V u_{n}^{(0)} \hat{H} u^{(0)}
$$

the $1^{\text {st }}$ order correction of the EIGENVALVES is the expectation value of \hat{H} ' an the UNPERTURBED states $u_{i}^{(0)}$
from *, which is

$$
\left(\hat{H}^{\prime}-E_{n}^{(1)}\right) u_{n}^{(0)}=\sum_{\substack{k \\ k \neq n}}\left(E_{n}^{(0)}-E_{k}^{(0)}\right) a_{n k} u_{k}^{(0)}
$$

if we multiply by $u_{m}^{(0)^{*} \text { \& integrate. }}$

$$
\begin{aligned}
& \int d V u_{m}^{(0) k} \hat{H}^{\prime} u_{n}^{(0)}-E_{n}^{(1)} \int d V u_{m}^{(0)^{k}} u_{n}^{(0)}= \\
&=\sum_{\substack{k \\
k \neq n}}\left(E_{n}^{(0)}-E_{k}^{(0)}\right) a_{n k} \int d v u_{m}^{(0)} u_{k}^{(0)}
\end{aligned}
$$

we used again the ORTHONORRALITY,

$$
\begin{aligned}
& \int d V u_{m}^{(0)^{*}} \hat{H} u_{n}^{(0)}=\left(E_{n}^{(0)}-E_{m}^{(0)}\right) a_{n m} \\
\Rightarrow & a_{n m}=\frac{\int d V u_{m}^{(0)^{k}} \hat{H}^{\prime} u_{n}^{(0)}}{E_{n}^{(0)}-E_{m}^{(0)}}=\frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}
\end{aligned}
$$

which is the $1^{\text {st }}$ order correction in the coefficients of the eigenvectors
2) Do the integrals which I left for you in the first exercise (question 2 from the Exercises for Week 10). There should be sufficient hints in the movie for you to do this - if not consult your maths notes.

- integral from week 10 exercise 2.

$$
\hat{H}^{\prime}=V_{0} \cos \left(\frac{\pi}{2 a} x\right)
$$

the correction to the $n^{\text {st }}$ order in the eigenenergies is

$$
E_{n}^{(1)}=\int d V u_{n}^{(0)^{*} \hat{H}^{\prime}} u_{n}^{(0)}
$$

Recalling the ground state of the infinite well,

$$
u^{(0)}=\frac{1}{\sqrt{a}} \cos \left(\frac{\pi}{2 a} x\right)
$$

we can set up the $1^{\text {st }}$ order conection

$$
\begin{aligned}
E_{n=1}^{(1)} & =\int d V u_{n}^{(0)^{*} H_{1}^{\prime}} u_{n}^{(0)} \\
& =\int d x \frac{1}{\sqrt{a}} \cos \left(\frac{\pi}{2 a} x\right) V_{0} \cos \left(\frac{\pi}{2 a} x\right) \frac{1}{\sqrt{a}} \cos \left(\frac{\pi}{2 a} x\right)
\end{aligned}
$$

$$
=\frac{V_{0}}{a} \int d x \cos ^{3}\left(\frac{\pi}{2 a} x\right)
$$

I change variable, $y=\frac{\pi}{2 a} x, \quad d y=\frac{\pi}{2 a} d x$

$$
\begin{aligned}
& =\frac{V_{0}}{a} \frac{2 a}{\bar{u}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d y \cos ^{3}(y) \\
& =\frac{2 V_{0}}{\bar{a}} \int d y \cos ^{3}(y)
\end{aligned}
$$

$$
\begin{aligned}
& \int d y \cos y\left(1-\sin ^{2} y\right) \\
& =\left(d y \cos y-\int d y \cos y \sin ^{2} y\right.
\end{aligned}
$$

Since $d(\sin y)=\cos y d y$

$$
\begin{aligned}
& =\int d y \cos y-\int d(\sin y) \sin ^{2} y \\
& =\left.\sin y\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}-\left.\frac{\sin ^{3} y}{3}\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}
\end{aligned}
$$

So our integral becomes

$$
\begin{array}{rlrl}
E_{1}^{(1)} & =\frac{2 V_{0}}{\bar{u}} \int d y \cos ^{3}(y) & & \text { Remember that } \\
& =\frac{2 V_{0}}{\pi}\left[2 \sin \frac{\pi}{2}-\frac{\left.2 \sin ^{3} \frac{\pi}{3}\right]}{3}\right. & \begin{array}{l}
E_{1}^{(1)} \text { is a } \\
\text { coerecrion to }
\end{array} \\
& =\frac{2 V_{0}}{\pi}\left[2-\frac{2}{3}\right]=\frac{8}{3} \frac{V_{0}}{\pi} & & E_{1}^{(0)}=\frac{\hbar^{2} \pi^{2}}{8 \sin a^{2}}
\end{array}
$$

3) After watching the first exercise, do question 3 from the Exercises for Week 10.

$$
V=\left\{\begin{array}{cc}
V_{0}, & -b \leq x \leq+b \\
0, & b<|x| \leq a \\
\infty, & |x|>a
\end{array}\right.
$$

We treat this potential as an infinite square well with a perturbation at the centre.

The perturbation is described by H ',

$$
H^{\prime}=\left\{\begin{array}{ccc}
V_{0} & ,-b \leq x \leq b \\
0 & , & \text { elsewhere }
\end{array}\right.
$$

The ground state eigenfunction of the INFINITE square well is:

$$
u_{1}^{(0)}=\frac{1}{\sqrt{a}} \cos \left(\frac{\pi}{2 a} x\right)
$$

As we have done before, the convection t_{0} its energy is.

$$
\begin{aligned}
E_{1}^{(1)} & =\int_{-a}^{a} u_{1}^{(0)} H^{\prime} u_{1}^{(0)} d x \\
& =\int_{-b}^{b} \frac{v_{0}}{a} \cos ^{2}\left(\frac{\pi}{2 a} x\right) d x
\end{aligned}
$$

Using $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$,

$$
\begin{aligned}
& =\left.\frac{V_{0}}{2 a}\right|_{-b} ^{b}\left(1+\cos \left(\frac{\pi}{a} x\right)\right) d x \\
& =\left.\frac{V_{0}}{2 a}\left(x+\frac{a}{\bar{a}} \sin \left(\frac{\pi}{a} x\right)\right)\right|_{-b} ^{b} \\
E_{1}^{(1)} & =\frac{V_{0}}{2 a}\left(2 b+\frac{2 a}{\bar{u}} \sin \left(\pi \frac{b}{a}\right)\right)
\end{aligned}
$$

NB
if $b=a \quad \Rightarrow \quad E_{1}^{(1)}=V_{0}$,
we have a constant shift of the energies.
4) Check that the normalization factor C_{1} in the solution of degenerate perturbation theory problem (question 8 from the Exercises for Week 10), (about 35 minutes in) is $2^{-1 / 2}$.

Now, we look at decienerare perturbation theory.

Consider a system w/ normalised wave functions $\Psi_{1}, \Psi_{2}, \Psi_{3}$.

Consider a perturbation H^{\prime}

$$
H^{\prime}=\left(\begin{array}{ccc}
0 & 0 & V_{1} e^{i \varphi} \\
0 & V_{0} & 0 \\
V_{1} e^{-i \varphi} & 0 & 0
\end{array}\right)
$$

$w / V_{0}, V_{1}>0 \quad V_{0} \neq V_{1}$

We write the wave function of the perturbed system as a linear combination of the Ψ 's.

$$
\nu=c_{1} \Psi_{1}+c_{2} \bar{\Psi}_{2}+c_{3} \bar{\Psi}_{3}
$$

Putting back the "conections" in the equations
of the perturbation, we hove the system

$$
\left(\begin{array}{ccc}
-E & 0 & V_{1} e^{i \varphi} \\
0 & V_{0}-E & 0 \\
V_{1} e^{-i \varphi} & 0 & -E
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \quad \begin{aligned}
& \left(H^{\prime}-E\right) \subseteq=0 \\
& H^{\prime} \underline{c}=E \subseteq
\end{aligned}
$$

To find non-trivial solutions we need de $=0$

$$
\begin{array}{r}
\left|\begin{array}{ccc}
-E & 0 & V_{1} e^{i \varphi} \\
0 & V_{0}-E & 0 \\
V_{1} e^{-i \varphi} & 0 & -E
\end{array}\right|=0 \\
\quad\left(V_{0}-E\right)\left(E^{2}-V_{1}^{2}\right)=0
\end{array}
$$

So the sol. are $E=V_{0}$ \& $E= \pm V_{1}$

As usual, we now find the eigenvectors' coefficients Therefore we substitute the solution into the matin x.

$$
\begin{aligned}
& E= V_{0} \quad\left(\begin{array}{ccc}
-V_{0} & 0 & V_{1} e^{i \varphi} \\
0 & 0 & 0 \\
V_{1} e^{-i \varphi} & 0 & -V_{0}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
&\left\{\begin{array}{l}
c_{1}=\frac{V_{1}}{V_{0}} e^{i \varphi} c_{3} \\
c_{1}=\frac{V_{0}}{V_{1}} e^{i \varphi} c_{3}
\end{array} \quad \Rightarrow \quad c_{1}=c_{3}=0\right. \\
& \Rightarrow \quad c_{2} \text { is free } \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& E= V_{1},\left(\begin{array}{ccc}
-V_{1} & 0 & V_{1} e^{i \varphi} \\
0 & V_{0}-V_{1} & 0 \\
V_{1} e^{-i \varphi} & 0 & -V_{1}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
&\left\{\begin{array}{l}
-V_{1} c_{1}+V_{1} e^{i \varphi} c_{3}=0 \\
\left(V_{0}-V_{1}\right) c_{2}=0
\end{array}\right. \\
& V_{1} e^{-i \varphi} c_{1}-V_{1} c_{3}=0 \\
&\left\{\begin{array}{l}
c_{3}=e^{-i \varphi} c_{1} \\
c_{2}=0 \\
u_{1}=0 \\
=
\end{array}\right. \\
& \Rightarrow
\end{aligned}
$$

Since Ψ_{i} are normalised, the normalisation factor is $\frac{1}{\sqrt{2}}$

$$
u_{1}=\frac{1}{\sqrt{2}}\left(\Psi_{1}+e^{-i \varphi} \Psi_{3}\right)
$$

$$
\begin{aligned}
& E=-V_{1},\left(\begin{array}{ccc}
V_{1} & 0 & V_{1} e^{i \varphi} \\
0 & V_{0}+V_{1} & 0 \\
V_{1} e^{-i \varphi} & 0 & V_{1}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& \left\{\begin{array}{l}
V_{1} c_{1}+V_{1} e^{i \varphi} c_{3}=0 \\
\left(V_{0}+V_{1}\right) c_{2}=0 \\
V_{1} e^{-i \varphi} c_{1}+V_{1} c_{3}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
c_{3}=-e^{-i \varphi} c_{1} \\
c_{2}=0
\end{array}\right. \\
& \left(c_{1}, c_{2}, c_{3}\right)=\left(10-e^{-i \varphi}\right) \\
& \text { nomalisation } \frac{1}{\sqrt{2}} \longrightarrow\left(\frac{1}{\sqrt{2}} \quad 0 \quad-\frac{1}{\sqrt{2}} e^{-i \varphi}\right) \\
& \Rightarrow \quad u_{3}=\frac{1}{\sqrt{2}}\left(\Psi_{1}-e^{-i \varphi} \Psi_{3}\right)
\end{aligned}
$$

NB mivsing point 5. Will pdate solutions asap.

