1. Discuss the physical interpretation of the wavefunction in quantum mechanics.

Describe the procedure by which a wavefunction is normalized, and explain the physical reason for performing this procedure.

A wave packet is described by the wavefunction

$$
\psi(x)= \begin{cases}B\left(a^{2}-x^{2}\right) & \text { for }-a \leq x \leq a \\ 0 & \text { otherwise }\end{cases}
$$

where a and B are constants.

For this wave packet:
(a) Show that a value of B that normalizes the wavefunction is $\frac{\sqrt{15}}{4} a^{-5 / 2}$.
(b) Calculate the expectation value $\left\langle x^{2}\right\rangle$.
(c) Calculate the expectation value of the square of the momentum, $\left\langle p_{x}{ }^{2}\right\rangle$.
(d) Given that the expectation values of x and p_{x} are both zero, and that the standard deviation in a quantity q is defined as $\Delta q=\sqrt{\left\langle q^{2}\right\rangle-\langle q\rangle^{2}}$, evaluate the uncertainty product $\Delta x \Delta p_{x}$ and comment on how this result relates to the uncertainty principle.

- 4 is a probability amplitude
- 141^{2} is a probability density
- $|4(x)|^{2} d x$ probability of finding the particle $\operatorname{in}[x, x+d x]$
normalization condition : $\quad \int_{\text {all space }}|\psi(x)|^{2} d x=1$
The reason we do this is that we want the probability of finding the particle in its domain to be 1

$$
L(x)= \begin{cases}B\left(a^{2}-x^{2}\right) & \text { for }-a \leq x \leq a \\ 0 & \text { otherwine }\end{cases}
$$

(a) momalization:

$$
\begin{aligned}
& B^{2} \int_{-a}^{a}\left(a^{2}-x^{2}\right)^{2} d x=1 \\
& =B^{2}\left[a^{4} \int d x+\int x^{4} d x-2 a^{2}\left(x^{2} d x\right]\right. \\
& =B^{2}\left[2 a^{5}+\frac{2}{5} a^{5}-\frac{4}{3} a^{5}\right] \\
& =B^{2}\left[\frac{30+6-20}{15} a^{5}\right] \\
& =B^{2} \frac{16}{15} a^{5}=\frac{1}{4} a^{-5 / 2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-a}^{a} B^{2}\left(a^{2}-x^{2}\right) x^{2}\left(a^{2}-x^{2}\right) d x \\
& =B^{2}\left(a^{2}-x^{2}\right)\left(a^{2} x^{2}-x^{4}\right) d x \\
& =B^{2}\left(a^{4} x^{2}-a^{2} x^{4}-a^{2} x^{4}+x^{6}\right) d x \\
& =B^{2} a^{7}\left(\frac{2}{3}-\frac{4}{5}+\frac{2}{7}\right) \\
& =\frac{15}{16} a^{-5} a^{7} \frac{16}{105}=\frac{1}{7} a^{2}
\end{aligned}
$$

$$
\begin{aligned}
(c)\left\langle p_{x}^{2}\right\rangle & \left.=B^{2} \int\left(a^{2}-x^{2}\right)\left(-\hbar^{2}\right)_{x}^{2}\right)\left(a^{2}-x^{2}\right) d x \\
& =-\hbar^{2} B^{2} \int\left(a^{2}-x^{2}\right)(-2) d x \\
& =2 \hbar^{2} B^{2}\left[\mid a^{2} d x-\int x^{2} d x\right] \\
& =2 \hbar^{2} B^{2}\left[2 a^{3}-\frac{2}{3} a^{3}\right] \\
& =\frac{8}{3} \hbar^{2} B^{2} a^{3} \\
& =\frac{8}{3} \hbar^{2} \frac{15}{16} a^{-5} a^{3}=\frac{15}{6} \hbar^{2} a^{-2}
\end{aligned}
$$

(d) $\left\langle p_{x}\right\rangle=\int_{-a}^{a} B^{4}\left(a^{2}-x^{2}\right)-i \hbar \partial_{x}\left(a^{2}-x^{2}\right) d x$

$$
=-i \hbar B^{4} \int \underbrace{\left(a^{2}-x^{2}\right)(-2 x)}_{\text {odd functions }} d x \quad \int_{-a}^{a} \text { odd }=0
$$

$$
\begin{aligned}
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{1}{7} a^{2}} \\
& \Delta p_{x}=\sqrt{\left\langle p_{x}^{2}\right\rangle-\left\langle p_{x}\right\rangle^{2}}=\sqrt{\frac{15}{6} \hbar^{2} a^{-2}} \\
& \Delta x \Delta p_{x}=\sqrt{\frac{15}{42}} \hbar
\end{aligned}
$$

3. Consider a particle of mass m confined to move in one dimension and subjected to a harmonic oscillator potential $V(x)=\frac{1}{2} k x^{2}$.
(a) Write down the time-independent Schrödinger equation for this system.
(b) Find the relationships between ω and k, and between ω and the total energy E, for which

$$
u(x)=A \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right)
$$

is a solution of the Schrödinger equation from (a).
(c) Sketch the dependence of $u(x)$ on x. What aspect of your sketch indicates that $u(x)$ is the ground state?
(d) Write down the energy of the nth excited state for the particle subjected to this potential.
(e) Calculate a value of A that normalizes $u(x)$.
[You may use the following standard integral: $\int_{-\infty}^{\infty} \exp \left(-a x^{2}\right) d x=(\pi / a)^{1 / 2}$]

Another particle, also of mass m, is confined to move in two dimensions and subjected to the potential $V(x, y)=\frac{1}{2}\left(k_{1} x^{2}+k_{2} y^{2}\right)$.
(f) Write down an expression for the energy of the state having quantum numbers n_{1} and n_{2} associated with motion in the x and y directions respectively.
(g) Determine the energies and degeneracies of the three lowest energy levels of this system for the special case $k_{1}=k_{2}$.

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

(a) time -independent Schrödinger eq.

$$
\hat{H}_{4}=E_{4}
$$

$$
\begin{aligned}
& \hat{H}=\frac{p_{x}^{2}}{2 m}+\frac{1}{2} k x^{2} \\
& \omega=\sqrt{\frac{k}{m}} \\
& =-\frac{\hbar^{2}}{2 m} \eta_{x}^{2}+\frac{1}{2} m \omega^{2} x^{2} \\
& \hat{H} \psi(x)=E \psi(x) \\
& -\frac{\hbar^{2}}{2 m} 7_{x}^{2} \psi(x)+\frac{1}{2} \mu \omega^{2} x^{2} \psi(x)=E \psi(x) \\
& \text { (b) } u(x)=A e^{-\frac{m \omega x^{2}}{2 \hbar}} \\
& -\frac{\hbar^{2}}{2 m} \int^{2} u(x)+\frac{1}{2} k x^{2} u(x)=E u(x) \\
& -\frac{\hbar^{2}}{2 \mu}\left(-\frac{\mu \omega}{2 \hbar}\right) J_{x}(\not 2 x u(x))+\frac{1}{2} k x^{2} u(x)=E u(x) \\
& -\frac{\hbar^{2}}{m} \frac{\mu^{2} \omega^{2}}{4 \hbar^{2}} 2 x^{2} u(x)+\frac{\hbar^{2}}{m} \frac{m \omega}{2 \hbar} u(x) \\
& +\frac{1}{2} k x^{2} u(x)=E u(x)
\end{aligned}
$$

To be an eigenfunction, the pieces dependent on x^{2} weed to cancel out.

$$
\begin{aligned}
& \frac{1}{2} k x^{2}-\frac{m w^{2}}{2} x^{2}=0 \\
& k=m w^{2} \quad \rightarrow \quad w=\sqrt{\frac{k}{m}}
\end{aligned}
$$

On the other end, we are left with

$$
E u(x)=\frac{\hbar^{2}}{m} \frac{m \omega}{2 \hbar} u(x)
$$

there fore

$$
E=\frac{\hbar \omega}{2}
$$

which is the energy of $u(x)$, i.e. the ground state of the L.o.

To find $E(\omega)$, we wite $\hat{x} \& \hat{p}$ as:

$$
\begin{aligned}
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}^{+}+a\right) \\
& \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}^{+}-\hat{a}\right)
\end{aligned}
$$

which gives,

$$
\begin{aligned}
& \hat{a}=\sqrt{\frac{\mu w}{2 \hbar}}\left(\hat{x}+\frac{i}{m w} \hat{p}\right) \\
& \hat{a}^{+}=\sqrt{\frac{\mu w}{2 \hbar}}\left(\hat{x}-\frac{i}{m w} \hat{p}\right)
\end{aligned}
$$

rewriting the Hamiltonian in the new variables,

$$
\hat{H}=\hbar_{\omega}(\underbrace{\hat{a}^{+} \hat{a}}_{N}+\frac{1}{2})
$$

where

$$
\begin{aligned}
& \hat{a}^{+}|n\rangle=\sqrt{n+1}|n+1\rangle \\
& \hat{a}|n\rangle=\sqrt{n}|n-1\rangle
\end{aligned}
$$

the new \hat{H} tells me that

$$
\begin{aligned}
& \hat{H}|n\rangle=\hbar_{\omega}\left(N+\frac{1}{2}\right)|n\rangle=E|n\rangle \\
\rightarrow & E=\operatorname{\hbar \omega }\left(n+\frac{1}{2}\right)
\end{aligned}
$$

(c)

$u(x)$ is a gaussian wave function, meaning it is multiplied by the first Hermite polynomial $H_{0}(x)=1$ (while $H_{1}(x)=2 x$, $H_{2}(x)=4 x^{2}-1$, etc.

To find the ground state u_{0} we reed to find the solution to $\hat{a} u_{0}=0$
lu x, p coordinates,

$$
\begin{aligned}
\hat{a} u_{0} & =\frac{\mu \omega}{2 \hbar}\left(x+\frac{i}{m \omega} \hat{p}\right) u_{0} \\
& \left.=\frac{\mu \omega}{2 \hbar}\left(x+\frac{\hbar}{\mu \omega}\right)_{x}\right) u_{0} \\
& \left.=\left(\frac{\mu \omega}{2 \hbar} x+\frac{1}{2}\right)_{x}\right) u_{0}=0
\end{aligned}
$$

$$
\rightarrow \eta_{\times} u_{0}=\frac{m \omega}{\hbar} u_{0}
$$

sol: $\quad u_{0}=A e^{-\frac{m \omega}{2 k} x^{2}}$
(d) the n-th excited stale is the Hermite f^{n}

$$
u_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m w}{2 \hbar} x^{2}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar} x}\right)
$$

with $n=0,1,2, \ldots$
Here, H_{n} is a Hermite polynomial of degree n
(e) Normalization:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} A^{2} e^{-\frac{m \omega x^{2}}{\hbar}} d x=1 \\
& \int e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \rightarrow \int e^{-\frac{m \omega x^{2}}{\hbar}} d x=\sqrt{\frac{\pi \hbar}{m \omega}}
\end{aligned}
$$

$$
\begin{aligned}
& A^{2} \sqrt{\frac{\pi \hbar}{m w}}=1 \\
& A=\left(\frac{\mu \omega}{\hbar \pi}\right)^{1 / 4}
\end{aligned}
$$

(f) consider $V(x, y)=\frac{1}{2} k_{1} x^{2}+\frac{1}{2} k_{2} y^{2}$
we know that, if the potential is separable, the total energy is the sum of the energies,

$$
E_{n_{1}, n_{2}}=\hbar \omega_{1}\left(n_{1}+\frac{1}{2}\right)+\hbar \omega_{2}\left(n_{2}+\frac{1}{2}\right)
$$

(g) In the special case $k_{1}=k_{2}$

$$
\begin{aligned}
& E_{n_{1}, n_{2}}=\hbar \omega\left(n_{1}+n_{2}+1\right) \\
& E_{0,0}=\hbar \omega, \quad \operatorname{deg}=1 \\
& E_{1,0}=E_{0,1}=2 \hbar \omega, \quad \operatorname{deg}=2 \\
& E_{2,0}=E_{0,2}=E_{1,1}=3 \hbar \omega, \quad \operatorname{deg}=3
\end{aligned}
$$

\qquad

